Diffusion Tensor Imaging: Parkinson's Disease and Atypical Parkinsonism

David E. Vaillancourt

court1@uic.edu
Associate Professor at UIC
Departments of Kinesiology and Nutrition,
Bioengineering, and Neurology

Biomedical Technology Research Center 2011 Workshop San Francisco, CA

Characteristics of Parkinson's disease

- Prevalence rate PD (Moghal et al., 1994)
 - general population = 0.3%
 - 50-70 = 1%
 - > 65 = 3%
- Primarily a motor disorder
 - Tremor, bradykinesia, and rigidity
 - Affects activities of daily living such as eating, cooking, grooming
 - Also affects cognition, depression, anxiety, sense of smell
- Structural and physiological changes
 - Loss of neurons in SNc (McGeer et al., 1977)
 - PET studies show reduced dopamine uptake in the striatum (Brooks, 1990)

Major problems for current research

- There is no definitive diagnosis for PD, PSP, MSA, and ET while the person is alive
- It can be difficult to diagnose these diseases early
- Important to diagnose these diseases early and accurately because the prognosis is different
- Symptomatic treatments for PD, PSP, MSA, and ET are already different
- Disease modifying treatments could be different

What to focus on today

- Diffusion tensor imaging of the substantia nigra:
 - Early stage drug naïve Parkinson's disease
 - Healthy aging
 - Atypical Parkinsonism and Essential Tremor

Cell Loss in PD

Dopamine cell loss correlates with DTI in mouse model of PD

Ventrolateral tier of the substantia nigra most depleted in PD

Differs from age related neuron loss which has a sparing of ventral lateral tier with aging

Study design

- 14 early stage, de novo PD patients
 - Average age: 57 years
 - UPDRS motor range = 4 to 32
 - UPDRS mean 17
- 14 age and sex matched control subjects
- DTI sequence
 - 3T GE; 8-channel head coil; matrix = 256x256; 4mm slices; 15 slices; NEX = 4; b = 0, 1000; TR = 4500 ms; TE = 82 ms; 27 directions;

A Dorsal B0 Image

Rostral to caudal degeneration pattern

Individual patients have reduced FA

^{*}Caudal regions provide 100% sensitivity and 100% specificity

Combined DTI and R2* MRI based imaging

- 30 patients with PD
- 22 control subjects
- DTI and R2*
- Used voxel-based and ROI methods
- Increased R2* in SN
- Reduced FA in SN and thalamus

Peran et al., Brain, 2010

Combined DTI and R2* MRI based imaging has <u>high</u> sensitivity

Dorsal tier of the substantia nigra most depleted in aging

Healthy aging affects dorsal SN

**Could be different for ages greater than 71 years

Thalamus and PD

Thalamus and PD

*ICCs for two raters above 0.83

Thalamus and PD

fMRI and De Novo PD

Spraker et al., Human Brain Mapping, 2010 Prodoehl et al., Movement Disorders, 2010

Trait and state biomarkers

Trait biomarkers

- separating a disease from health
- separating a disease from other diseases

State biomarkers

- tracking progression of neurodegeneration
- tracking the efficacy of a drug acutely or chronically over time

DTI in PD, MSA, PSP, and ET

 Hypothesis: diffusion tensor imaging will differentiate PD from MSA, PSP, and ET.

Recruitment Goal: recruit 60 well diagnosed patients with these four movement disorders.

DTI in PD, MSA, PSP, and ET

What is involved:

- One morning session (few hours)
 - Tested off DA therapy (patients do not take morning dose)
- Structural imaging using T1 and T2
- Diffusion tensor imaging of basal ganglia
- Diffusion tensor imaging of <u>cerebellum</u>
- Diffusion tensor imaging of whole brain
- Rating scales for movement and cognition

Regions of Interest Analysis

- Basal ganglia: hand-drawn
 - Putamen, caudate, globus pallidus, substantia nigra
- Cerebellum: hand-drawn
 - Dentate, superior cerebellar peduncle (CP), middle CP, inferior CP
- Frontal and Cortical: standard ROIs
- Two raters blinded to patient status

Images we use to hand-draw ROIs

X red, Y green, Z blue

Example ROIs for BG

Example ROIs for Cerebellum

Substantia nigra of autopsied brains

- Alpha-synuclein accumulation greater in MSA and PD compared to PSP (Tong et al. 2010)
- Alpha-synuclein accumulation greater in MSA compared to PD (Tong et al. 2010)
- Reactive astrocytes greater in PSP and MSA compared to PD (Song et al. 2009)

Suggests that SN microstructure is fundamentally different in PD relative to atypical Parkinsonism

Summary

- Have demonstrated that FA values from DTI in the ventral SN has high sensitivity for early stage, de novo PD
- Combined DTI and iron imaging has high sensitivity for PD (Peran et al. 2010)
- AN, DM, and VA thalamic nuclei impaired in early PD
- DTI in substantia nigra shows promise in preliminary data for differentiating PD from MSA, PSP, and ET

Acknowledgments

Univ. Illinois at Chicago

- Daniel Corcos
- Janey Prodoehl
- Deborah Little
- Joni Planetta
- X. Joe Zhou
- Hong Yu
- Cynthia Poon
- Ajay Kurani
- Mary Mayka
- Matthew Spraker
- Ivy Abraham
- Stephen Coombes
- Pooja Wasson
- Kristina Neely

Rush University Medical Center

- Cynthia Comella
- Chris Goetz
- Kathleen Shannon
- Leo Verhagen
- Katie Kompoliti
- Brandon Barton
- Deborah Hall
- Jennifer Goldman

Funding

National Institutes of Health

- R01-NS-52318
- R01-NS-58487
- F32-MH-83424

Michael J. Fox Foundation